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A B S T R A C T   

This study investigates the impact of coupled heat and mass transfer on the peristaltic migration of a magne-
tohydrodynamic (MHD) stress-strain Jeffery-type hybrid nanofluid flowing through an inclined asymmetric 
micro-channel with a porous medium. The fundamental two-dimensional momentum and energy transport 
equations are simplified under the assumptions of long wavelength and low Reynolds number. To solve the 
momentum and heat transfer problems, two advanced fractional derivative approaches are employed: the fractal 
integral and the Prabhakar fractional derivative. The pressure difference is determined using numerical inte-
gration techniques, such as the Stehfest and Tzou’s algorithms. The results are presented through graphs and 
tables, which illustrate the effects of various parameters on the velocity, heat transfer, and trapping phenomena. 
As a result, we concluded that, pressure gradients grow with higher Reynolds numbers and channel-inclined 
angles. The heat transfer rate is observed to decrease as the Darcy number and the orientation of the electro-
magnetic field increase. When comparing the fractional derivative approaches, the fractal operator exhibits a 
more significant impact on the momentum profiles compared to the Prabhakar fractional operator. This differ-
ence is attributed to the distinct characteristics of the integral kernels associated with each fractional derivative 
definition. Furthermore, when comparing hybrid nanofluids, water-based (H2O + Ag + TiO2) hybrid fluids have a 
somewhat more significant effect than (C6H9NaO7 + Ag + TiO2) hybrid nanofluids.   

1. Introduction 

For many years, researchers have been working to enhance the 
thermal characteristics of base fluids. To achieve this, the most effective 
method, initially introduced by Choi [1], is the incorporation of a va-
riety of nanoparticle dispersions into the base materials. This combi-
nation of the base fluid and nanoparticles is referred to as "nanofluids". 
Nanofluids consist of small-sized particles that exhibit improved ther-
modynamic processes due to factors such as thermal stability, particle 
interactions, viscosity, temperature dependence, and material 

conductivity. The expanding research on nanofluids has enabled 
numerous commercial applications in diverse fields, including heat en-
gineering, thermal equipment, manufacturing processes, water and 
soil-based systems, biomedical technologies (e.g., cancer therapy), pe-
troleum engineering, chemical reactions, and nuclear power plants. 
Scientists have leveraged the unique thermal transport properties and 
topologies of nanofluids to make various contributions in this area. By 
applying a dual nano-phase model in annuli having concentric walls, 
Turkyilmazoglu [2] reported the thermal findings for nanofluids. Using 
microbial cells in a three-dimensional movable space, Sohail et al. [3] 
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carried out the optimized structure for nanoparticle flow. Even though 
the creation of nanofluids has addressed the bulk of industrial objec-
tives, scientists and researchers have continued to seek a more trust-
worthy and efficient fluid. To fill this void, a novel type of nanofluid was 
created by merging two different types of nanoparticles with ordinary 
fluids. Wole-Osho et al. [4] demonstrated the effect of a nanoparticle’s 
mixture ratio, along with temperature and concentration, affecting the 
thermal conductivity of hybrid nanofluids. Hybrid nanofluids represent 
a more advanced classification of nanofluids, and the process of creating 
them is referred to as hybridization. The hybridization of two or more 
distinct nanoparticles leads to an improvement in the thermal conduc-
tivity of the individual nanoparticles, resulting in a novel composition of 
nanoparticles known as hybrid nanoparticles. Waini et al. [5] studied 
the continuous, fully formed mixed conduction flow of a longitudinally 
vertical surface immersed in a porous liquid incorporating hybrid 
nanoparticles. Pandya et al. [6] focused on a numerical model designed 
to improve the energy efficiency of an axially walled elevated tunnel 
utilizing water-based hybrid nano-liquid. Asadi et al. [7] examined the 
effect of hybrid nano-liquid on system productivity. Nadeem et al. [8] 
researched a base fluid that ends in an exponentially growing curved 
surface. The study evaluates the effect of incorporating constraints of the 
hybrid nanoelement. Waeli et al. [9] investigated hybrid solar power 
solutions using nanofluid-based filters. 

The field of fractional calculus has gained significant attention in 
various research domains due to its ability to effectively capture the 
memory effects inherent in many physical phenomena. Fractional cal-
culus is employed in many scientific disciplines, including electro-
chemistry, biophysics and fluid elasticity [10]. First, in 1967, Caputo 
presented the fractional operator by utilizing the Laplace transformation 
and power-law forms together with fractional derivatives. This frac-
tional derivative was the first to solve the Riemann–Liouville operator 
problem. The singular kernel of this operator, however, contains some 
flaws in the form of fictitious solutions at t = T . Fractional calculus 
grew more sophisticated in 2015; Caputo and Fabrizio introduced the 
Caputo-Fabrizio fractional operator, which includes an exponential and 
non-singular kernel [11]. That being said, the CF operator is criticized 
because the CF operator’s kernel is non-singular and local and because 
the operator’s solution has the shape of an exponential equation rather 
than an exponential function. Because of their significant utility in the 
biological sciences, fractional differential operators present a fresh 
technique for solving these challenges. Subsequently, Atangana and 
Baleanu introduced the renowned AB-fractional operator with the 
Mittag-Leffler non-singular kernel, which yields a limited solution and a 
stabilising point [12]. Tilak Raj Prabhakar, a renowned mathematician 
from India, introduced a novel three-parameter fractional derivative 
operator. This operator is one of the three distinct fractional derivative 
definitions associated with the Mittag-Leffler function, collectively 
known as the Prabhakar fractional derivative. Successful applications of 
classical kernels are reported by this fractional derivative operator with 
Mittag-Leffer [13]. Atangana has explored the connections between 
practical computational problems and the concepts of fractal and frac-
tional derivatives. In a previous work, Atangana et al. [14] provided a 
comprehensive assessment of the recently proposed operators for solv-
ing fractal fractional differential equations. Kolsi et al. [15] examined 
the impact of different nanoparticles using fractional scheme. In [16] 
authors also examined the influence of various nanomaterial’s with heat 
transfer and fractional approach. Ramesh et al. [17] investigated the 
numerical solution of Jeffery type hybrid nanofluid. A 
multi-dimensional chaotic structure lacking an equilibrium position 
within a fractal-fractional Mittag-Leffler kernel is analyzed mathemati-
cally and numerically in Ref. [18–26]. 

Employing the Prabhakar derivative with precise fractional param-
eters may be a good strategy for identifying acceptable numerical 
models that are recognized for achieving a sufficient balance of exper-
imental and imagined results [27,28]. Shah et al. [29] explored a 
Prabhakar component of the Maxwell fluid model, which included heat 

transfer and free convection flow. Asjad et al. [30] used the Prabhakar 
operator to solve the fractional issue of Jeffrey’s fluid on a revolving 
perpendicular plate, along with the energy problems. They used the 
Laplace approach to derive momentum. Sarwar et al. [31] investigated 
the convectional velocity of a Casson solvent via a vibrating medium, 
adopting a Prabhakar fractional technique based on the extended 
Fourier law. Chen et al. [32] investigated the impact of the slip rate 
restriction on the flow property of the Oldroyd-B fluid by extrapolating 
Fick’s and Fourier’s laws utilizing the Prabhakar fractional function. 
Basit et al. [33] employed the Prabhakar fractional technique to study 
the outcome of second-grade fractional nanofluid equipment with 
numerous kinds of nanoparticles. Samraiz et al. [34] introduce the 
Hilfer-Prabhakr fractional derivative method addressing mathematical 
problems. Elnaqeeb et al. [35] have investigated the impression of a 
viscous liquid using the Prabhakar fractional derivative function. 
Aiyashi et al. [36] investigated the impact of dense dissipation and 
generated magnetic fields on unstable mixed turbulent stalling point 
flows. This shows that the magnetic field produced significantly influ-
enced the study’s results. Pandey et al. [37] investigated the 
magneto-radiative and heating convective motion of boundaries in a 
Maxwell fluid over a permeable inclination perpendicular plate, taking 
into account the implications of the generated magnetic field. The 
research [38] and [39] focused on how generated magnetic fields and 
heat rays affect the magneto-convection circulation of a dissipative 
medium. This suggests that the magnetic field that was generated had a 
key role in these evaluations.Applying Leibniz’s derivative to discon-
tinuous fractal media leads naturally to the fractal derivative. It fits the 
description of a unique localized fractional derivative [40]. The use of 
the fractal derivative in fractal medium has garnered significant interest. 
For instance, it can simulate heat transport and water penetration in 
multi-scale textile and wool fibers [41]. By using numerical techniques, 
Srivastava et al. [42] have compiled a set of fractional-order system of 
equations with singularity and severe nonlinear effects related to elec-
trodynamics flow in an annular cylindrical tunnel. Imran [43] has been 
studying the fractal fractional derivative to explain the basis or flow of 
viscoelastic fluid. MHD affects flow between two indefinitely long par-
allel plates. However, the phenomenon of heat transport issue with fluid 
flow hasn’t yet been studied using the novel concept of the 
fractal-fractional derivative. In recent years, fractal-fractional de-
rivatives and their associated integrals have garnered significant atten-
tion due to their wide-ranging applications in modeling a variety of 
real-world phenomena across diverse domains, such as ecology, 
finance, medicine, and chemistry [27,44-49]. 

Many researchers have been interested in the simple problem of a 
fluid sheared between two parallel plates distanced by a distance H ever 
since Couette’s investigation in 1890. The most alluring aspect of 
laminar flow is its straightforward flow pattern with a linear velocity 
profile. This served as the foundation for the explanation of Newton’s 
viscosity law. The classic work of Taylor serves as the foundation for 
experimental observations using concentric cylinders that resemble true 
Couette flow between parallel surfaces. This case involved a setup where 
a porous medium was connected to a fixed plate, and uniform heat fluxes 
of varying intensities were applied to both plates. The governing equa-
tions used to model this system were the Brinkman-Forchheimer-Darcy 
equations [50]. Furthermore, more recent research on different hybrid 
nanofluids with different mathematical schemes can see in [51–56]. 

Turbulent Couette flow has received renewed attention during the 
last decade or so. Kitoh et al. [57] investigated planar Couette flow with 
a conveyor belt that ran through a 0.88 m by 5.12 m channel. It is widely 
known that the Couette-Taylor flow in Newtonian fluids shows a diverse 
set of oscillations [58]. Liu and Khomami [59] employed the DNS 
method to describe the flow of a polymer mixture in a Taylor-Couette 
apparatus. An analysis of a section of the published work reveals a 
lack of an acceptable analytical or semi-analytical approach to analyze 
its stability and instability, as well as the problem’s velocity pattern 
[60]. They investigated a solution to the erratic MHD Couette flow issue 
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with an exterior with flexibility made up of two convergent porous tubes 
with infinite lengths and fluid generated by the impulsive or increased 
initiatives of the outer pistons, witnessing that injection results in flow a 
delay while suctions cause flow rapidity. The polymer-induced splitting 
of large Taylor swirled into fewer of them, considerably enhancing drag 
forces near the walls. Eskin [61] identified a laboratory Couette device 
as a viable tool for studying drag-reducing chemicals because of the 
resemblances between Couette and pipe flow structures. 

To the best of the author’s knowledge, no attempt has been made to 
investigate the unsteady Jeffrey-type Hybrid nanofluid flow of funda-
mental fluxes under the impact of magnetic field and inclination. We 
explored the basic and modified Couette flows of an MHD volatile 
Jeffrey-type hybrid nanofluid using an inclined microchannel in this 
work. We used the two most current and modified definitions of frac-
tional derivatives, Prabhakar and Fractal non-integer order derivatives. 
We also employed the integral transform, particularly the Laplace 
transformation, to cope with the governed non-dimensional PDEs solu-
tion. In all instances, velocity profile solutions are derived using nu-
merical methodologies such as the Stehfest and Tzous algorithms. To 
study vertical channel data, set p = π/2, and to gather horizontal 
channel results, set p = 0. The search outcomes show that hybrid 
nanofluids have better thermal transfer capacities than typical fluids in 
addition to single-nanoparticle nanofluids. This is because of the col-
lective effect of the several nanostructures in the hybrid composition. 
The chemical structure and quantity of the hybrid nanoparticles may be 
adjusted to improve the nanofluid’s thermophysical features, such as 
heat electrical conductivity, thickness, and weight, for specific uses. 
Hybrid nanofluids can boost the effectiveness and output of energy 
sources, including solar thermal enthusiasts, nuclear-powered reactors, 
and power plants. These are the most common issues. Finally, graphics 
show the influence of the major factors on flow quantities. 

Nomenclature:  

Symbol  Quantity Unit 

Td : Ambient temperature (K) 
q : The angle of magnetic inclination ( − ) 
U0 : Characteristic velocity (ms− 1) 
q : Laplace transform variable ( − ) 
μnf : Dynamic viscosity (Kg/ms) 
σ : Electrical Conductivity ( − ) 
v : Fluid velocity (m/s) 
α, β : Fractional parameters ( − ) 
Gr : Heat Grashof number ( − ) 
Gm : Mass Grashof number ( − ) 
M : Magnetic field ( − ) 
ρnf : Nano-fluid density (Kg/m3) 
Nu : Nusselt number ( − ) 
Bo : Strength of Magnetic field (Kg/s2) 
g : Gravity acceleration (m/s2) 
Sh : Sherwood number ( − ) 
Cp : Specific heat at the constant pressure (J/kgK) 
Sc : Schmidt number ( − ) 
Cf : Skin friction ( − ) 
t : Times (s) 
knf : Thermal Conductivity of the Nanofluid (W/mk) 
βT : Thermal expansion coefficient (1/k) 
Tw : Wall temperature (K)  

2. Formulations of governed equations 

This article describes a Jeffery-type hybrid nanofluid free convection 
that passes via two hot side plates positioned in the xy-plane and h- 
distance apart in a rectangular coordinate system. For the moving hybrid 
nanofluid, several nanoparticles (Ag + TiO2) are considered mixed in 
(H2O,C6H9NaO7) as the base fluids. This flow passes through an inclined 
material with a uniform density while an inclined magnetic field is 
present. At a set point temperature T0, the whole system—which com-
prises the fluid and its constraints—remains in its original equilibrium. 
When time-dependent shear force is applied, the upper plate (y = h) 

begins to move in its plane at time t > 0. Owing to the pressure gradient, 
temperature field augmentation, and oscillation, the static hybrid 
nanofluid begins to flow through the inclined channel. The following 
considerations are put forth to help formulate regulated PDEs.  

• The microchannel has an unlimited length and a width of h.  
• The microchannel oscillates perpendicular to the y-axis and along 

the x-axis.  
• The leading equations are developed for incompressible fluid flow 

when density (ρ) is fixed and devoid of time and distance.  
• This simplifies the continuity equation to the incompressibility 

assumption (∇ ⋅ u = 0).  
• The system’s temperature isT0 at timet = 0.  
• The temperature rises fromT0toTwaftert > 0.  
• Modifications in the heat field and pressure disparity cause fluid to 

travel faster in the x direction.  
• An inclined magnetic field (q) with aB0intensity operates against the 

flow direction.  
• During flow rates, inertial effects must be addressed, and expanded 

Darcy equations are more applicable. 

An in-compressible MHD Jeffrey-type hybrid nanofluid over the in-
clined plane can be assessed using the following PDE governing system 
[17] 

∇.S = 0 (1)  

ρ
(

∂S

∂ℑ
+S .∇S

)

= − ∇p +∇.S +ℜ+ J × B (2)  

here S , ρ, ℑ, p, S, ℜ, J , and B , signifying the velocity vector, time, 
pressure, stress tensor, Darcy’s resistance, current vector, and magnetic 
field intensity. Where 

ℜ = −
μ
k
S ,S =

μ
1 + λ

(ṙ+ λor̈), J = σ(E + q×B ), ṙ = ∇S + (∇S )
T  

r̈ =
dṙ
dt

=
∂ṙ
∂t

+ (S .∇)ṙ  

are the mathematical forms of the above-defined constraints. 
From the above assumptions, the governed PDE of this inclined flow 

will be modeled for the Jeffrey-type hybrid nanofluid [62,63] 

∂v(Y,ℑ)

∂ℑ
= −

∂K

∂x
+

1
ρhnf

μhnf

(1 + Λ)

(
∂2

v(Y,ℑ)

∂Y2

)

+ g sin(p)

−
σhnf

ρhnf
B2

0sin(q)v(Y,ℑ) −
μhnf

ρhnf k
v(Y,ℑ) (3)  

Whereμhnf,kandρhnf are the coefficients of viscosity, porosity, and density 
of the hybrid nanofluid. σhnf are the electrical conductivity and β0 in-
tensity of the magnetic field. And Λ is the relation of retardation and 
relaxation time, and ∂K

∂x 
is the pressure gradient. 

3. Solution of fundamental flow 

In this part of the study, the controlled partial differential equation 
(PDE) solution is evaluated through the application of two distinct and 
recently developed fractional derivative definitions, namely the fractal 
fractional derivative and the Prabhakar fractional derivative. Further-
more, the Laplace transform integral transform approach is employed to 
obtain the solutions for both the simple and generalized Couette flow 
cases, following the non-dimensionalization of the governing equations. 

3.1. Simple Couette flow by FFD 

In an applied inclination magnetic field, we examined an unsteady 
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and incompressible MHD Jeffrey fluid flowing across an inclined 
microchannel separated by h. The top plate vibration and temperature 
fluctuation cause the Jeffery-type hybrid nanofluid containing 
(C6H9NaO7 + Ag + TiO2) and (H2O + Ag + TiO2) hybrid nanofluids to 
circulate. As seen in Fig. 1, the fluid movement happens horizontally as a 
result of the top plate vibrating. 

Considering these presumptions in place, the leading equation may 
be expressed as 

∂v(Y,ℑ)

∂ℑ
=

1
ρhnf

μhnf

(1 + Λ)

(
∂2

v(Y,ℑ)

∂Y2

)

+ g sin(p) −
σhnf

ρhnf
B2

0sin(q)v(Y,ℑ)

−
μhnf

ρhnf k
1
k

v(Y,ℑ)

(4) 

With corresponding conditions 

v(0,ℑ) = 0; ∀ ℑ (5)  

v(h,ℑ) = Uof (t); ℑ > 0 (6)  

v(Y, 0) = 0; 0 ≤ Y < h (7) 

Presenting the non-dimensional quantities 

Y =
Y
l
, v =

v

Uo
, Da =

k′

l2, Re =
ρUol

μ , t =
Uoℑ

l
, h =

h
l
,

Fr =
U2

gl
, M =

̅̅̅σ
μ

√

β0l, Λ1 =
1

(1 + Λ)

After using above constraints and neglecting the bar notation, we 
yield 

Re
∂v(Y, t )

∂t
=

Re
Fr

sin(p) + Λ1
∂2

v(Y, t )

∂Y2 −
1

Da
v(Y, t ) − M

2sin(q)v(Y, t ) (8) 

With it corresponding dimensionless conditions 

v(0, t ) = 0; ∀ t (9)  

v(h, t ) = f (t); t > 0 (10)  

v(Y, 0) = 0; 0 ≤ Y < h (11)  

3.1.1. Solution of Couette flow by FFD definition 
Using the above non-dimensional constraints and also utilizing the 

definition of fractal fractional derivative definition, we attain the second 
order PDE for simple couette flow   

With dimensionless conditions 

v(0, t ) = 0; ∀ t (9a)  

v(h, t ) = f (t); t > 0 (10a)  

v(Y, 0) = 0; 0 ≤ Y < h (11a) 

It is a more convenient approach to apply the Laplace transform (LT) 
on the governing partial differential equation (PDE) for the simple 
Couette flow problem. By employing the Laplace transform on the PDE 
for simple Couette flow, along with the corresponding Laplace definition 
of the fractal fractional derivative (FFD) and the associated boundary 
conditions, the solution for the momentum field in the simple Couette 
flow can be obtained. 

v(Y, q) =
h8

(h2 + h6qα+β)

⎛

⎝1 −
sinh

(
Y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h3 + h4qα+β

√ )

sinh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(h3 + h4qα+β)

√

⎞

⎠

+ F (q)
sinh

(
Y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h3 + h4qα+β

√ )

sinh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(h3 + h4qα+β)

√ (13)  

where: 

h1 = M
2sin(q), h2 = h1 +

1
Da

, h3 =
h2

Λ1
, h4 =

Re
Λ1 β Γ(β)

,

h5 = sin(p), h6 =
Re

β Γ(β)
, h7 =

Re
Fr

, h8 = h5 ∗ h7  

3.1.2. Solution of Couette flow by PFD definition 
For the solution in the sense of Prabhakar fractional derivative, 

Fig. 1. Geometry of simple Couette flow.  

Re
FFDD

α,β
t v(Y, t ) = βt β− 1

[

Λ1
∂2

v(Y, t )

∂Y2 −
1

Da
v(Y, t ) − M

2sin(q)v(Y, t )+
Re
Fr

sin(p)
]

−
v(Y, 0)

Γ(1 − α)t
− α (12)   
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retaining the definition of Prabhakar fractional integral and using the 
time derivative in the sense of Prabhakar fractional derivative operator, 
we get. 

RPFD
e D

α,β,γ
t v(Y, t ) =

Re
Fr

sin(p) + Λ1
∂2

v(Y, t )

∂Y2 −
1

Da
v(Y, t ) − M

2sin(q)v(Y, t )

(14) 

With the same initial and boundary conditions as like for the solution 
of FFD section. Now by retaining the LT on the above Eq. (14) 

∂2
v(Y, q)
∂Y2 −

1
Λ1

(
1

Da
+M

2sin(q)+ qβ(1 − αq− α)
γ
)

v(Y, q) +
Re
Fr

sin(p) = 0  

v(0, q) = 0; v(h, q) = F (q); v(Y, 0) = 0 

By solving the above second-order differential equation with its 
correspondence boundary conditions 

v(Y, q) =
h8

(Y1 + Re qβ(1 − αq− α)
γ
)

(

1 −
sinh

(
Y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Y2 + Y3 qβ(1 − αq− α)

γ√ )

sinh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Y2 + Y3 qβ(1 − αq− α)

γ
)

√

)

+ F (q)
sinh

(
Y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Y2 + Y3 qβ(1 − αq− α)

γ√ )

sinh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(Y2 + Y3 qβ(1 − αq− α)

γ
)

√

(15) 

Where: 

Y1 = M
2sin(q) +

1
Da

, Y2 =
Y1

Λ1
, Y3 =

Re
Λ1

, h8 = h5 ∗ h7  

3.2. Generalized Couette flow 

In this study, the focus is on the unsteady and incompressible mag-

netohydrodynamic (MHD) Jeffrey-type hybrid nanofluid flow between 
two horizontal, inclined parallel plates separated by a distance h. Similar 
to the simple Couette flow configuration, the entire system is initially at 
a constant state. After some time, due to the variation in thermal profile 
and pressure gradient H = − ∂K

∂x
, the static fluid starts to move through 

the microchannel. This condition is analogous to the Couette flow. It is 
presumed that the bottom plate is at a constant position, and the top 
plate is moving at a perpetual velocity Uo, as shown in Fig 2. 

With the hypotheses, the equation regulating the flow may be 

expressed as for generalized Couette flow 

∂v(Y,ℑ)

∂ℑ
= H +

1
ρhnf

μhnf

(1 + Λ)

(
∂2

v(Y,ℑ)

∂Y2

)

+ g sin(p)

−
σhnf

ρhnf
B2

0sin(q)v(Y,ℑ) −
μhnf

ρhnf k
v(Y,ℑ) (16)  

v(0,ℑ) = 0; v(h,ℑ) = Uof (t); v(Y, 0) = 0 

Familiarizing the non-dimensional quantities 

Y =
Y
l
, v =

v

Uo
, Da =

k′

l2, Re =
ρUol

μ , ℑ =
Uoℑ

l
, h =

h
l
, M =

̅̅̅σ
μ

√

β0l,H

=
l2G
μUo 

Using the above parameters 

Re
∂v(Y, t )

∂t
= H + Λ1

∂2
v(Y, t )

∂Y2 −
1

Da
v(Y, t ) − M

2sin(q)v(Y, t ) +
Re
Fr

sin(p)

(17)  

and dimensionless initial and boundary conditions are 

v(0, t ) = 0; v(h, t ) = f (t); v(Y, 0) = 0  

3.2.1. Solution of generalized Couette flow by FFD definition 
For the finite solution of the above-considered PDE, utilizing the 

definition of FFD integral and its corresponding derivative operator, we 
have 

FFDD
α,β
t   

By using the LT with its boundary conditions, we get the generalized 
velocity profile as follows 

v(0, q) = 0; v(h, q) = F (q); v(Y, 0) = 0  

and 

Fig. 2. Geometry of Generalized Couette flow.  

v(Y, t ) = βt β− 1
[

H

Re
+

Λ1

Re

∂2
v(Y, t )

∂Y2 −
1

Re Da
v(Y, t ) −

M
2

Re
sin(q)v(Y, t )+

1
Fr

sin(p)
]

−
v(Y, 0)

Γ(1 − α)t
− α   
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v(Y, q) =
H

h2 + h6qα+β

⎛

⎝1 −
sinh

(
y
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h3 + h4qα+β

√ )

sinh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(h3 + h4qα+β)

√

⎞

⎠

+
h8

(h2 + h6qα+β)

⎛

⎝1 −
sinh

(
Y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h3 + h4qα+β

√ )

sinh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(h3 + h4qα+β)

√

⎞

⎠

+ F (q)
sinh

(
Y

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h3 + h4qα+β

√ )

sinh
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(h3 + h4qα+β)

√ (18)  

3.2.2. Solution of generalized Couette flow by PFD definition 
For the solution in the sense of Prabhakar fractional derivative, using 

PFD operator on Eq. (17). 

Re
PFDD

α,β,γ
t  

v(Y, t ) = H + Λ1
∂2

v(Y, t )

∂Y2 −
1

Da
v(Y, t ) − M

2sin(q)v(Y, t ) +
Re
Fr

sin(p)

Again employing the Laplace transformation on the above trans-
formed equation and on boundary conditions 

∂2
v(Y, q)
∂Y2 =

M
2

Λ1
sin(q)v(Y, q) − H −

Re
Fr

sin(p) +
1

Λ1
qβ(1 − αq− α)

γ
v(Y, q)

+
1

Λ1

1
Da

v(Y, q)

(19)  

v(0, q) = 0; v(h, q) = F (q); v(Y, 0) = 0 

After using the above boundary conditions, the solution of the above 
nonhomogeneous differential equation will become as follows 

v(Y, q) =
H

h2 + h6 U2

(

1 −
sinh

(
y
̅̅̅̅̅̅
U4

√ )

sinh
( ̅̅̅̅̅̅

U4
√ )

)

+
h8

(Y1 + Re U2)

(

1 −
sinh

(
y
̅̅̅̅̅̅
U4

√ )

sinh
( ̅̅̅̅̅̅

U4
√ )

)

+ F (q)
sinh

(
y
̅̅̅̅̅̅
U4

√ )

sinh
( ̅̅̅̅̅̅

U4
√ )

(20) 

Where: 

U1 = 1 − αq− α, U2 = qβU1
γ
, U3 = h4U2, U4 = h3 + U3 

Several researchers have employed various numerical methods to 
obtain the Laplace inverse of the solutions to the governing equations 
[64–66]. Since the solutions for the basic Couette flow and the gener-
alized Couette flow are more complex, numerical techniques, specif-
ically the Stehfest algorithm and Tzou’s approach, were utilized in this 
study. The mathematical formulations of these numerical methods are as 
follows: 

U(y, t) =
ln(2)

t
∑∞

i=1
CkU

(

y, k
ln(2)

t

)

Ck = (− 1)k+p
∑min(k,p)

j=k+1
2

jp(2j)!
(p − j)!j!(i − 1)!(k − 1)!(2i − k)!

U(y, t) =
e4.7

t

[

0.5U
(

y,
4.7
t

)

+Re

{
∑M

l=1
(− 1)lU

(

y,
4.7 + lπi

t

)}]

Validity and Comparison: 
This section assesses the validity, compares results, and discusses the 

consequences of the Prabhakar and Fractal fractional schemes on hybrid 
nanofluids. To validate the findings of this investigation, the finalized 
velocity profile is visually compared with the outcomes measured by 
Ramesh et al. [17] in Fig. 4a and b. The combination of curves verifies 
this research. The resemblance of curves gives concrete evidence for the 
study’s validity. This validation reinforces the theoretical foundation 
upon which the research is based. The Fig. 3a and b were plotted to 
validate the numerical techniques used, specifically the Stehfest and 
Tzou’s algorithms. The overlapping nature of the curves for both the 
simple and generalized Couette flow situations indicates that the ob-
tained results and the numerical techniques employed have been suc-
cessfully validated. Subsequently, as with this work, we investigated a 
Jeffery-type hybrid nanofluid passing via an inclined channel. Fig. 5a 
and b provide graphical representations of the hybrid nanofluids under 
consideration for various time values. The influence of (C6H9NaO7 + Ag 
+ TiO2)-based hybrid nanofluid on the forward motion field is somewhat 
more significant than that of (H2O + Ag + TiO2) based hybrid nanofluid 
for both Couette flow and generalized flow at small time scales. As time 
passes, the velocity profile grows exponentially and diverges in direc-
tion, and the effect of (H2O + Ag + TiO2)-based hybrid nanofluid grows 
stronger than that of (C6H9NaO7 + Ag + TiO2)-based hybrid nanofluid, 
as seen in the figures. 

4. Explanation of results 

In this work, we evaluated the Jeffery-type hybrid nanofluid con-
taining (C6H9NaO7,H2O) base fluid and (TiO2,Ag) nanoparticles. The 
Jeffrey fluid model is a non-Newtonian fluid with viscoelastic dynamics 
and an exclusive memory time continuum known as the relaxation 
period time. Jeffrey fluid models are used to analyze both the thermal 
and flow properties of nanofluids. To summarize, the (Cu − Ag/H2O −
C2H6O2)hybrid nanofluid is a special type of Jeffrey nanofluid. The flow 
pattern is analyzed for two scenarios: basic Couette flow and generalized 
Couette flow over an angled microchannel. The magnetic field from the 
outside is also used to regulate the speed of fluids. The non-
dimensionalized governed PDEs are converted using the most current 
fractional definitions, Fractal and Prabhakar fractional derivatives, and 
then empirically solved via the Laplace transformation. Figs. 3-5 provide 
a detailed discussion of the obtained results’ validity and graphical 
comparison analysis. Furthermore, Figs. 6-13 examine the physical in-
fluence of various limitations on fluid velocity for both types of fluids. 

Fig. 6 (a-d) demonstrate the influence of fractional constraints α, β, γ 

Fig. 3. Comparison of this study with Ramesh et al. [17].  
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with simple and generalized couette flows using various (H2O) and 
(C6H9NaO7) nanofluids. Fractional attributes are more successful at 
capturing the viscoelastic character of fluids than integer-order de-
rivatives. In Couette and modified Couette flow, when a fluid is enclosed 
within two parallel plates that move relative to one another, fractional 
factors can cause complicated viscoelastic reactions like shear dispersion 
or hardening. In the context of Couette flow, the incorporation of frac-
tional factors can lead to anomalous transport behavior, resulting in sub- 
diffusion, where particles or substances exhibit slower movement 

compared to classical diffusion. Furthermore, when comparing the 
investigated hybrid nanofluids, the water-based (H2O + Ag + TiO2) 
hybrid nanofluid was found to have a slightly more pronounced effect on 
both the basic and generalized Couette flow velocity profiles, compared 
to the (C6H9NaO7 + CU + TiO2)-based hybrid nanofluid. 

Fig. 7 (a-d) show the effect of Da on the Jeffery-type nanofluid for 
simple and generalized Couette flows, accordingly. In fluid science, the 
Darcy factor represents the relationship between the barrier of friction in 
a channel and speed of flow across the substrate. The Darcy friction 

Fig. 4. Comparison of numerical algorithms.  

Fig. 5. Comparison of considered base fluids.  

Fig. 6. Influence of α, β on v(Y, t ) with γ = 0.7, Re = 0.6, q = π
4, M = 2.4, Fr = 5.2, Λ1 = 1.5, t = 1.4, Da = 0.3, φ = 0.04.
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factor Da is associated with the Darcy-Weisbach equation, which de-
scribes how friction reduces pressure in an object. It takes into account 
pipe dimensions, width, fluid acceleration, and resistance. The Darcy 
number Da affects the equilibrium of viscous and flexible forces. At 
moderate Darcy numbers, when buoyant forces are dominant, the pat-
terns of flow may be similar to that of a Newtonian fluid. Conversely, as 
the Darcy number grows, the flow may display either shear-weakened or 
shear-thickening conduct according to the fluid’s unique rheological 
characteristics. The Darcy number Da scientifically defines the per-
centage of frictional to inertial impacts in a flowing fluid; hence, the Da 
parameter causes the fluid speed to drop. Furthermore, like the influ-
ence of fractional constraints, the impact of (H2O + Ag + TiO2) hybrid 

nanofluid is bit more as compared to the (C6H9NaO7 + Ag + TiO2) 
suspension due to the physical significance of considered nanoparticles. 
The reason for the hybrid nanofluid property modeling may be explored 
in a variety of settings with various traits such as thermal conductivity, 
viscosity, specific heat capacity, and nanoparticle attributes. The heat 
conductivity of hybrid nanofluids is determined by a number of pa-
rameters, including the nature and quantity of nanoparticles, the base 
fluid’s characteristics, and the way it interacts with the nanoparticles. 

Fig. 8 (a-d) provide a full description of Reynolds number (Re). 
Reynolds number is a non-dimensional metric used in fluids research to 
assess a substance’s flow. It is defined as the percentage of forces of 
attraction to viscous forces. The differences in Reynolds number in the 

Fig. 7. Influence of Da on v(Y, t ) with α = β = γ = 0.7, Re = 0.6, q = π
4, M = 2.4, Fr = 5.2, Λ1 = 1.5, t = 1.4, φ = 0.04.

Fig. 8. Influence of Re on v(Y, t ) with α = β = γ = 0.7, q = π
4, M = 2.4, Fr = 5.2, Λ1 = 1.5, t = 1.4, Da = 0.3, φ = 0.04.
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turbulent range might not exhibit a straight linear relationship with fluid 
velocity because other factors, including loss of energy and flow struc-
ture, take dominance. The flow pattern can change from laminar to 
turbulent at a certain Reynolds number. In a turbulence situation, fluid 
velocity develops extremely irregular and turbulent. Turbulence is 
distinguished by whirling swirling and momentum variations, which 
result in improved combining and transfer qualities. The fluid flow may 
be regulated by varying the (Re) number for both primary and gener-
alized Couette flow. 

Figs. 9 and 10 show how the applied ambient magnetic field (M) and 
the inclination (q) affect each other on the simple and generalized 
Couette flow. When an electromagnetic field is introduced to a carrying 
fluid, the reaction of the magnetic field with the fluid’s chargeable 

particles can drastically alter the flow patterns. This is also referred to as 
magnetohydrodynamics (MHD). The Lorentz force, which results from 
the interactions of the magnetic field and the fluid’s electrical density, 
can operate as an extra operating or resistive force in MHD circulation, 
relying on the relative direction of the magnetic region and the fluid 
motion. The Lorentz force may influence the velocity trajectory of 
generalized Couette flow by producing related flows, modifying 
boundary layer dynamics, or influencing flow equilibrium. In conclu-
sion, the actual effect of a magnetic field being created on fluid speed in 
simple and generalized Couette flow is complicated and relies on a 
number of elements, comprising MHD implications, magnetic field force 
and direction, and equilibrium flow features. Furthermore, like (Da) and 
(Re), the impact of (H2O + CU + TiO2) hybrid nanofluid is bit more than 

Fig. 9. Influence of M on v(Y, t ) with α = β = γ = 0.7, Re = 0.6, q = π
4, Fr = 5.2, Λ1 = 1.5, t = 1.4, Da = 0.3, φ = 0.04.

Fig. 10. Influence of q on v(Y, t ) with α = β = γ = 0.7, Re = 0.6, M = 2.4, Fr = 5.2, Λ1 = 1.5, t = 1.4, Da = 0.3, φ = 0.04.
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(C6H9NaO7 + CU + TiO2) hybrid nanofluid for both parameters (M) 
and (q) and for both simple and generalized flow cases. 

Fig. 11(a-d) show the effect of Froude number (Fr) on the accelera-
tion of (H2O + Ag + TiO2) and (C6H9NaO7 + Ag + TiO2)-based hybrid 
nanofluid when using basic and generalized Couette flow. The Froude 
number (Fr) is a non-dimensional measure in fluids that describes the 
relative significance of inertial acceleration against gravity forces in a 
fluid’s motion. In generalized Couette flow, when a fluid is trapped 
among two identical plates with relative movement, the Froude number 
might flow velocity since gravitational influences are often minimal in 
this setup. The Reynolds number (Re) represents the proportion of in-
ertial and viscosity forces, which influences the stability of flow and 
conversion to disturbance. While the Froude number (Fr) might not 

directly influence flow velocity in generalized Couette flow, it can 
nevertheless give insight into flow properties when combined with other 
dimensionless quantities. In addition, this can also be noted that the 
momentum profile attained by Fractal fractional derivative have more 
significant role as compared to Prabhakar solution velocity in the case of 
simple Couette flow. While on the other side, in the case of generalized 
flow, the behavior is altered due to the possessions of Mittag-Leffler 
kernel. 

Fig. 12 (a-d) show the concrete actions of the Jeffery fluid re-
strictions (Λ1) on the flow velocity for both basic and generalized Cou-
ette flows. The Jeffery fluid parameter (Λ1) indicates the fluid’s rate of 
relaxation divided by the flow’s distinctive time range. It describes the 
fluid’s elasticity and impacts its response to shear compression. As the 

Fig. 11. Influence of Fr on v(Y, t ) with α = β = γ = 0.7, Re = 0.6, q = π
4, M = 2.4, Λ1 = 1.5, t = 1.4, Da = 0.3, φ = 0.04.

Fig. 12. Influence of Λ1 on v(Y, t ) with α = β = γ = 0.7, Re = 0.6, q = π
4, M = 2.4, Fr = 5.2, t = 1.4, Da = 0.3, φ = 0.04.
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Jeffery fluid component (Λ1) grows, the viscoelastic implications grow 
more apparent. This indicates that the fluid is more deformation- 
resistant and may display stress relaxation or elastic rebound charac-
teristics. Viscoelastic influences in Jeffery fluids can cause changes in 
the velocity distribution compared to Newtonian fluids. The Jeffery fluid 
characteristic may impact the variation in velocity and the entire form of 
the velocity profile as well. Increasing the value of the Jeffery fluid 
component (Λ1) can lead to the development of thicker or more pro-
nounced boundary layers, which in turn influence the velocity differ-
ence near the boundary layer and the overall flow dynamics. 
Consequently, as the value of (Λ1) is increased, the flow profile exhibits 
a decrease. 

Fig. 13 (a-d) show how time deletion (t ) interacts with the acceler-
ation field for both hybrid nanofluids (C6H9NaO7 + Ag + TiO2) and (H2O 
+ Ag + TiO2). This shows that for simple and generalized Couette flow, 
the momentum field increases for both cases (C6H9NaO7 + Ag + TiO2) 
and (H2O + Ag + TiO2)-based hybrid nanofluids. Fluid speed can vary 
over time under temporary flow conditions. When a flow starts or stops 
or the boundary conditions change rapidly, the fluid motion does not 
immediately stabilize. On the other hand, the flow goes through 

transitional phases in which the velocity changes over time until it 
stabilizes. Varying boundary conditions, such as the flow rate of a wall 
that interfaces with the fluid or the pressure gradient throughout a 
network, can reduce fluid velocity over time, as illustrated in Fig 12b. 
Furthermore, as with other limitations, the impact of (H2O + Ag + TiO2)- 
based suspension is somewhat greater than that of (C6H9NaO7 + Ag +
TiO2)-based suspension with time value variations for both cases of 
velocity flows. Tables 1 and 2 

Finally, Tables 3 and 4 compare the numerical findings of our 
investigation to the results obtained by Ramesh et al. [17] for both basic 

Fig. 13. Influence of t on v(Y, t ) with α = β = γ = 0.7, Re = 0.6, q = π
4, M = 2.4, Fr = 5.2, Λ1 = 1.5, Da = 0.3, φ = 0.04.

Table 1 
The thermo physical properties of basic quantities.  

Thermal features Hybrid Nanofluid 

Density ρf =
ρhnf

(
(1 − φ2)

(
(1 − φ1) + φ1

ρs1
ρf

)

+ φ2ρs2

)

Dynamic Viscosity μf = μhnf(1 − φ1)2.5(1 − φ2)2.5 

Electrical conductivity σbf =
σhnf

(
1 +

3φ(φ1σ1 + φ2σ2 − σbf (φ1 + φ2))

(φ1σ1 + φ2σ2 + 2φσbf − φσbf (φ1σ1 + φ2σ2 − σbf (φ1 + φ2)))

)

Thermal conductivity 
kbf =

khnf
(

ks2 + (n − 1)kbf − (n − 1)(kbf − ks2)φ2
ks2 + (n − 1)kbf + (kbf − ks2)φ2

) and kf =
kbf

(
ks1 + (n − 1)kf − (n − 1)(kf − ks1)φ1

ks1 + (n − 1)kf + (kf − ks1)φ1

)

Heat capacitance 
(ρCp)s =

(ρCp)hnf

(1 − φ2)

(

(1 − φ1) + φ1
(ρCp)s1
(ρCp)f

)

+ φ2(ρCp)s2 

Thermal Expansion Coefficient 
(ρβ)f =

(ρβ)hnf

(1 − φ2)
(
(1 − φ1) + φ1

(ρβ)s1
(ρβ)f1

)

+ φ2(ρβ)s2   

Table 2 
Basic characteristics of considered nanoparticles and base fluid.  

Material (H2O) (C6H9NaO7) (Ag) (TiO2) 

ρ(Kg/m3) 997.1 898 10,500 425 
Cp(J/kgK) 4179 4175 235 6862 
k(W/mK) 0.613 0.6367 429 8.9538 
βT(K− 1) 21 23 1.89 0.9 
σ 0.05 0.07 3.6 × 107 1 × 10− 7  
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and generalized Couette flows. The findings of this study for both sce-
narios (basic and generalized Couette flow) are extremely similar to 
those of Ramesh et al. [17], indicating its validity. Additionally, the 
velocity profile in both situations represents a diminishing trend. 

5. Conclusions 

The study investigated the implications of coupled heat and mass 
transfer on the rapid movement of a couple stress fluid through a porous 
medium, in the presence of a magnetized gradient within an inclined 
asymmetrical channel. The governing equations were formulated under 
the assumptions of long wavelengths and low Reynolds numbers. The 
study examined a fractional Jeffery-type hybrid nanofluid in the context 
of planar and generalized Couette flow phenomena. The fractional so-
lutions for the stream function and thermal transport coefficients were 
derived using both the fractal and Prabhakar definitions of fractional 
derivatives. The second-degree PDE is examined using a numerical in-
tegral Laplace transformation. The impact of the included factors on the 
flow attributes and flow occurrences caused by wall digestion are 
thoroughly reviewed. The key conclusions of the examination are as 
follows:  

• Increased coupling stress fluid factor leads to decreased peristaltic 
pumping speed. 

In-plane and generalized Couette flows, the pressure progressive 
causes velocity to rise.  

• Velocity rises as the time component improves.  
• Increasing the heat production dimension, magnetic field tendency, 

and Jeffrey-fluid component leads to a drop in momentum.  
• To interpret the Newtonian fluid system findings, set Λ = 0.  
• The upward channel has a higher velocity than the horizontal 

stream.  
• The velocity field may be altered by adjustingRe, Fr, M, Λ1.  
• The impression of(H2O)-based hybrid nanofluid is a bit more than 

(C6H9NaO7)-based hybrid nanofluid due to the corporeal features of 
considered nanoparticles(Ag, TiO2).  

• The Prabhakar fractional derivative-based models can also give a 
fascinating insight into the motion and other domain submissions, 
with the possibility to alter the boundary layers by adjusting frac-
tional factors.  

• The overlapping of this study’s results with the consequences of 
Ramesh et al. [17] signifies the validity and correctness of the results 
of this study.  

• The exposed solutions can aid in precisely interpreting actual data 
and serve as a tool for evaluating potential estimates of answers 
when required. 

CRediT authorship contribution statement 

Ali Raza: Writing – original draft, Methodology, Data curation, 
Conceptualization. Ovidiu V. Stadoleanu: Resources, Investigation, 
Formal analysis. Ahmed M. Abed: Writing – review & editing, Super-
vision, Data curation, Conceptualization. Ali Hasan Ali: Writing – re-
view & editing, Visualization, Software, Project administration. 
Mohammed Sallah: Writing – original draft, Resources, Investigation, 
Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Acknowledgements 

This study is supported via funding from Prince Sattam bin Abdulaziz 
University project number (PSAU/2024/R/1445). Also, the authors are 
thankful to the Deanship of Graduate Studies and Scientific Research at 
University of Bisha for supporting this work through the Fast-Track 
Research Support Program. 

References 

[1] S.U. Choi, "Nanofluids: from vision to reality through research," 2009. 
[2] M. Turkyilmazoglu, Fully developed slip flow in a concentric annuli via single and 

dual phase nanofluids models, Comput. Methods Programs Biomed. 179 (2019) 
104997. 

[3] M. Sohail, R. Naz, S.I. Abdelsalam, On the onset of entropy generation for a 
nanofluid with thermal radiation and gyrotactic microorganisms through 3D flows, 
Phys. Scr. 95 (2020) 045206. 

[4] I. Wole-Osho, E.C. Okonkwo, H. Adun, D. Kavaz, S. Abbasoglu, An intelligent 
approach to predicting the effect of nanoparticle mixture ratio, concentration and 
temperature on thermal conductivity of hybrid nanofluids, J. Therm. Anal. 
Calorim. 144 (2021) 671–688. 
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y U(y, t) by this study of 
generalized Couette flow 

U(y, t) by Ramesh et al. [17] for 
generalized Couette flow 

0.1 0.4176 0.4251 
0.15 0.6260 0.6373 
0.5 0.8340 0.8492 
0.25 1.0415 1.0605 
0.3 1.2482 1.2712 
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0.65 2.6651 2.7202 
0.7 2.8619 2.9224 
0.75 3.0569 3.1223 
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0.9 3.6299 3.7153  

A. Raza et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0002
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0002
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0002
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0003
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0003
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0003
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0004
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0004
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0004
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0004
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0005
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0005
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0005


International Journal of Thermofluids 22 (2024) 100656

13

[6] N.S. Pandya, A.N. Desai, A.K. Tiwari, Z. Said, Influence of the geometrical 
parameters and particle concentration levels of hybrid nanofluid on the thermal 
performance of axial grooved heat pipe, Thermal Sci. Eng. Progress 21 (2021) 
100762. 

[7] A. Asadi, I.M. Alarifi, L.K. Foong, An experimental study on characterization, 
stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid, J. Mol. Liq. 
307 (2020) 112987. 

[8] S. Nadeem, N. Abbas, M. Malik, Inspection of hybrid based nanofluid flow over a 
curved surface, Comput. Methods Programs Biomed. 189 (2020) 105193. 

[9] A.H. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, H.A. Hasan, A.N. Al- 
Shamani, An experimental investigation of SiC nanofluid as a base-fluid for a 
photovoltaic thermal PV/T system, Energy Convers. Manage 142 (2017) 547–558. 

[10] N.A. Shah, A.A. Zafar, S. Akhtar, General solution for MHD-free convection flow 
over a vertical plate with ramped wall temperature and chemical reaction, Arab. J. 
Math. 7 (2018) 49–60. 

[11] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular 
kernel, Progress Fractional Differ. Appl. 1 (2015) 73–85. 

[12] A. Atangana and D. Baleanu, "New fractional derivatives with nonlocal and non- 
singular kernel: theory and application to heat transfer model," arXiv preprint 
arXiv:1602.03408, 2016. 

[13] M. Yavuz, European option pricing models described by fractional operators with 
classical and generalized Mittag-Leffler kernels, Numer. Methods Partial. Differ. 
Equ 38 (2022) 434–456. 

[14] A. Atangana, M.A. Khan, Validity of fractal derivative to capturing chaotic 
attractors, Chaos Solitons Fractals 126 (2019) 50–59. 

[15] L. Kolsi, A. Raza, K. Al-Khaled, K. Ghachem, S.U. Khan, A.U. Haq, Thermal 
applications of copper oxide, silver, and titanium dioxide nanoparticles via 
fractional derivative approach, Waves Random Complex Media 33 (2023) 
794–807. 

[16] A. Raza, S.U. Khan, M.I. Khan, S. Farid, T. Muhammad, M.I. Khan, et al., Fractional 
order simulations for the thermal determination of graphene oxide (GO) and 
molybdenum disulphide (MoS2) nanoparticles with slip effects, Case Stud. Thermal 
Eng. 28 (2021) 101453. 

[17] K. Ramesh, V. Joshi, Numerical solutions for unsteady flows of a 
magnetohydrodynamic Jeffrey fluid between parallel plates through a porous 
medium, Int. J. Comput. Methods Eng. Sci. Mech. 20 (2019) 1–13. 

[18] Q. Haidong, M. ur Rahman, S.E. Al Hazmi, M.F. Yassen, S. Salahshour, M. Salimi, et 
al., Analysis of non-equilibrium 4D dynamical system with fractal fractional 
Mittag–Leffler kernel, Eng. Sci. Technol. Int. J. 37 (2023) 101319. 

[19] F. Batool, A. Raza, S.U. Khan, M. Rafiq, M.I. Khan, Exploration of kink-type 
solutions of a dispersionless system using reliable techniques, Eur. Phys. J. Plus 138 
(2023) 1074. 

[20] A. Raza, S.U. Khan, M. Yasir, S. Dero, Accelerating flow for engine oil base fluid 
with graphene oxide and molybdenum disulfide nanoparticles: modified fractional 
simulations, Waves Random Complex Media (2023) 1–16. 

[21] A. Raza, R. Ali, S.M. Eldin, S.H. Alfalqui, A.H. Ali, New fractional approach for 
CMC and water based hybrid nanofluid with slip boundary layer: applications of 
fractal fractional derivative, Case Stud. Thermal Eng. 49 (2023) 103280. 

[22] S.U. Khan, A. Raza, A. Kanwal, The inclined surface flow of hybrid nanofluid with 
Newtonian heating and general velocity flow constraints: the Prabhakar model, 
Waves Random Complex Media (2022) 1–12. 
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multiphase flow boiling heat transfer of nanofluids in the horizontal metal foam 
tubes, Int. J. Thermofluids (2024) 100605. 

[56] S.H.H. Karouei, M.B. Shani, S.H.H. Eimeni, P. Pasha, D.D. Ganji, Computational 
modeling of magnetized hybrid nanofluid flow and heat transfer between parallel 
surfaces with suction/injection, Int. J. Thermofluids 22 (2024) 100613. 

[57] K. Trinh, Modelling the probability density distribution of the velocity in the wall 
layer of turbulent flow, in: 7th World Congress of Chemical Engineering: 
Proceedings, 2005. 

[58] C.D. Andereck, S. Liu, H.L. Swinney, Flow regimes in a circular Couette system 
with independently rotating cylinders, J. Fluid. Mech. 164 (1986) 155–183. 

[59] N. Liu, B. Khomami, Polymer-induced drag enhancement in turbulent Taylor- 
Couette flows: direct numerical simulations and mechanistic insight, Phys. Rev. 
Lett. 111 (2013) 114501. 

[60] B.K. Jha, C.A. Apere, Time-dependent MHD Couette flow in a porous annulus, 
Commun. Nonlinear Sci. Numer. Simul. 18 (2013) 1959–1969. 

A. Raza et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0006
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0006
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0006
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0006
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0007
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0007
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0007
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0008
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0008
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0009
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0009
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0009
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0010
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0010
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0010
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0011
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0011
http://arxiv.org/abs/arXiv:1602.03408
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0013
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0013
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0013
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0014
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0014
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0015
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0015
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0015
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0015
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0016
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0016
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0016
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0016
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0017
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0017
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0017
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0018
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0018
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0018
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0019
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0019
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0019
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0020
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0020
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0020
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0021
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0021
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0021
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0022
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0022
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0022
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0023
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0023
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0024
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0024
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0025
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0025
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0025
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0026
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0026
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0026
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0027
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0027
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0027
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0028
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0028
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0028
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0029
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0029
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0029
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0030
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0030
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0031
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0031
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0031
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0031
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0032
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0032
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0032
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0033
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0033
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0033
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0033
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0034
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0034
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0034
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0035
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0035
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0035
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0036
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0036
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0036
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0037
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0037
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0037
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0038
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0038
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0038
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0039
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0039
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0039
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0040
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0040
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0041
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0041
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0042
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0042
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0042
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0043
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0043
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0043
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0044
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0044
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0045
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0045
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0045
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0045
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0046
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0046
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0046
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0046
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0047
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0047
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0047
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0047
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0048
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0048
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0048
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0049
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0049
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0049
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0049
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0050
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0050
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0050
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0050
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0051
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0051
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0052
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0052
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0052
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0052
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0053
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0053
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0053
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0054
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0054
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0054
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0054
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0055
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0055
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0055
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0056
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0056
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0056
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0057
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0057
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0057
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0058
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0058
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0059
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0059
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0059
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0060
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0060


International Journal of Thermofluids 22 (2024) 100656

14

[61] D. Eskin, Applicability of a Taylor–Couette device to characterization of turbulent 
drag reduction in a pipeline, Chem. Eng. Sci. 116 (2014) 275–283. 

[62] R. Selvi, R. Muthuraj, MHD oscillatory flow of a Jeffrey fluid in a vertical porous 
channel with viscous dissipation, Ain Shams Eng. J. 9 (2018) 2503–2516. 

[63] S. Srinivas, R. Muthuraj, Peristaltic transport of a Jeffrey fluid under the effect of 
slip in an inclined asymmetric channel, Int. J. Appl. Mech. 2 (2010) 437–455. 

[64] Q. Ali, M. Amir, A. Raza, U. Khan, S.M. Eldin, A.M. Alotaibi, et al., Thermal 
investigation into the Oldroyd-B hybrid nanofluid with the slip and Newtonian 

heating effect: Atangana–Baleanu fractional simulation, Front. Mater. 10 (2023) 
1114665. 

[65] A. Raza, N. Nigar, U. Khan, S. Elattar, S.M. Eldin, A.M. Abed, Comparative 
investigation of fractional bioconvection and magnetohydrodynamic flow induced 
by hybrid nanofluids through a channel, Front. Mater. 10 (2023) 1143612. 

[66] M. Ijaz Khan, K. Al-Khaled, A. Raza, S.U. Khan, J. Omar, A.M. Galal, Mathematical 
and numerical model for the malaria transmission: Euler method scheme for a 
malarial model, Int. J. Modern Phys. B 37 (2023) 2350158. 

A. Raza et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0061
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0061
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0062
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0062
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0063
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0063
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0064
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0064
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0064
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0064
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0065
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0065
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0065
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0066
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0066
http://refhub.elsevier.com/S2666-2027(24)00098-3/sbref0066

	Heat transfer model analysis of fractional Jeffery-type hybrid nanofluid dripping through a poured microchannel
	1 Introduction
	2 Formulations of governed equations
	3 Solution of fundamental flow
	3.1 Simple Couette flow by FFD
	3.1.1 Solution of Couette flow by FFD definition
	3.1.2 Solution of Couette flow by PFD definition

	3.2 Generalized Couette flow
	3.2.1 Solution of generalized Couette flow by FFD definition
	3.2.2 Solution of generalized Couette flow by PFD definition


	4 Explanation of results
	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


